三角形的高怎么求_三角形求底边公式


面临这样的问题:大正方形的边长确定为16厘米,我们如何计算阴影部分的面积呢?

对于几何的学习,尤其是面积和周长的计算,是小学生必须掌握的基础知识。这道题目,虽然对小学生来说有一定的挑战性,但也是他们学习几何的重要一环。

我们注意到,题目中的阴影部分并非简单的形状,它是一个三角形,而且并非直角三角形。我们没有给出三角形的底和高的具体数值。那么,我们该如何入手解决这个问题呢?

对于已经掌握了一定几何知识的初中生来说,他们可能会利用添加辅助线的方法来解决问题。对于小学生而言,这种方法可能较为陌生。

方法一:我们可以尝试通过添加辅助线来解决问题。连接AC,这样我们可以发现△ACF与△ACD的面积是相等的。这两个三角形底和高分别对应大正方形和小正方形的边长。进一步观察,我们会发现这两个三角形有一个公共部分△ACG。如果我们从两个三角形中同时减去这个公共部分,我们就可以得到△AFG的面积等于△CDG的面积。

通过这样的操作,我们将阴影部分的一部分进行了转移,使得阴影部分的面积与△CDF的面积相等。而△CDF的面积正好是大正方形面积的一半,即(16×16)÷2=128cm²。

方法二:如果我们不熟悉添加辅助线的方法,我们还可以尝试另一种方法:中间参数法。我们可以将这个不规则的阴影三角形面积转化为规则图形的面积相加减的形式。具体来说,阴影部分的面积可以看作是梯形ABCF与△CDF的面积之和减去△ABD的面积。

在这个方法中,我们虽然设定了小正方形的边长为a,但在计算过程中这个值被直接抵消了,无需求出具体的边长值。

无论是哪种方法,我们都可以得出阴影部分的面积。这也说明了在解决几何问题时,我们可以灵活运用不同的方法,找到最适合的解决方案。